锂离子电池正极材料标准解读

关键字:知识干货;锂电池;正极材料;标准解读

来源:储能科学与技术

在锂离子电池正极材料的研究方面,德裔美国学者GOODENOUGH教授作出了巨大贡献:他1980年就职于英国牛津大学期间发现钴酸锂(LiCoO2,简称LCO)可用作锂电正极,次年在LCO专利中提及镍酸锂(LiNiO2,也称LNO)作为正极材料的可行性;1983年,又与访问学者THACKERAY一起,首次尝试将锰酸锂(LiMn2O4,简称LMO)用于锂离子电池;1997年,在美国德州大学Austin分校期间,基于雄厚的固体化学理论,开发出新型橄榄石结构正极材料——磷酸铁锂(LiFePO4,简称LFP)。此外,为了解决镍酸锂性能不稳定问题,1992年以来加拿大戴尔豪西大学的DAHN教授和日本大阪市立大学的小槻勉教授进行了大量的掺杂改性研究;1997年,日本户田公司率先申请了最早的镍钴铝酸锂(LiNi1-x-yCoxAlyO2,简称NCA)专利;1999年,新加坡大学材料研究与工程学院的刘昭林、余爱水等在镍钴酸锂基础上引入Mn改性,最早报导了镍钴锰酸锂(LiNi1-x-yCoxMnyO2,也称三元材料、NCM)。

经过近30年的迅猛发展,锂离子电池的负极仍以碳材料为主,而正极则出现了百花齐放、百家争鸣的崭新局面,基于上述科学家的研究成果,钴酸锂、锰酸锂、镍钴酸锂(LiNi1-xCoxO2,也称NC)、镍钴锰酸锂、镍钴铝酸锂、磷酸铁锂等正极材料陆续产业化,并被拓展用于众多领域。根据数据统计,2017年全球锂电正极材料市场用量已经达到28万吨,并以每年超过10%的速率稳步增长。随着新能源汽车对高能量密度的需求,目前镍钴锰酸锂已经成为最重要、占比最大的正极材料(图1)。

【干货】锂离子电池正极材料标准解读

图1 全球锂电正极材料市场需求及预测

 

【干货】锂离子电池正极材料标准解读

重点内容导读

1 国内锂电正极材料相关标准

【干货】锂离子电池正极材料标准解读

 

【干货】锂离子电池正极材料标准解读

表1 我国锂离子电池正极材料相关标准

【干货】锂离子电池正极材料标准解读

图2 我国锂电正极材料产品标准发布情况

 

2 锂电池正极材料产品标准技术规范

2.1 锂离子电池对正极材料的要求

正极是电池的核心部件,其优劣直接影响电池性能。一般而言,对正极活性物质有如下要求:① 允许大量Li+嵌入脱出(比容量大);② ?具有较高的氧化还原电位(电压高);③ 嵌入脱出可逆性好,结构变化小(循环寿命长);④ 锂离子扩散系数和电子导电性高 (低温、倍率特性好);⑤ ?化学/热稳定性高,与电解液相容性好(安全性好);⑥ 资源丰富,环境友好,价格便宜(成本低、环保)。

2.2 正极材料的主元素含量

【干货】锂离子电池正极材料标准解读

富锂锰基材料(简称Li-rich,OLO)是由美国阿贡实验室 ? THACKERAY小组于2001年系统研究并申请专利的正极材料,是由Li2MnO3和LiMO2构成的固溶体[8]。与NCM类似,由于其M的多变性和Li2MnO3、LiMO2两种组成的变化(图3),导致其主元素含量无法准确定位,只能采用很宽的范围界定,从而也削弱了制定该标准的价值。该正极材料在实用性方面还面临电性能不稳定的挑战,没有真正的产品推向市场,因此标准制定有些过于前瞻。

 

【干货】锂离子电池正极材料标准解读

图3 富锂锰基材料的基本相图

2.3 正极材料的晶体结构

标准中涉及的锂离子电池正极材料的晶体结构主要分3类:α-NaFeO2层状型、橄榄石型、尖晶石型(图4)。

 

【干货】锂离子电池正极材料标准解读

(a)α-NaFeO2型

【干货】锂离子电池正极材料标准解读

(b)橄榄石型

【干货】锂离子电池正极材料标准解读

(c)尖晶石型

图4 几种常见正极材料的晶体结构示意图

正极材料中,LiCoO2的纯相比较容易制备,产品具有α-NaFeO2层状结构,对应于美国粉末衍射标准联合委员会Joint Committee on ?Power Diffraction ? Standards,简称JCPDS发布的50-0653#卡片;LiMn2O4的纯相更容易得到,产品具有尖晶石立方结构,对应于JCPDS ? 35-0782#卡片;LiFePO4因其Fe为+2价,必须在惰性气氛中制备,产品具有橄榄石结构,对应于JCPDS ? 83-2092#卡片。LiNiO2纯相很难制备且不稳定:Ni2+较难氧化为Ni3+,Ni2+与Li+半径接近,易发生阳离子混排,形成无电化学活性立方岩盐相[Li+1-xNi2+x]3a[Ni3+1-xNi2+x]3b ? O2。尽管如此,该材料也有其特征的JCPDS卡片,例如《镍酸锂》引用的16-0427#,《镍钴锰酸锂》和《镍钴铝酸锂》引用的09-0063#。而经过掺杂改性形成的NC、NCM、NCA等相对稳定的固溶体反而没有一张专属的JCPDS卡片,比较令人费解。

LiNi1/2Mn1/2O2中Mn以+4价存在,Ni以+2价存在,是个稳定的固溶体相,在空气中即可轻松制备[11]。以LiCoO2、LiNiO2和LiNi1/2Mn1/2O2为基本组分,LiNi1-x-yCoxMnyO2的本质相图可以表述为图5。

 

【干货】锂离子电池正极材料标准解读

图5 镍钴锰酸锂的本质相图

据此相图,可将NCM分为低镍(Ni<50%,摩尔分数)、中镍(50%≤Ni≤65%)和高镍(Ni>65%)等不同类型。低镍-NCM材料特点是几乎全部以空气中稳定的LiNi1/2Mn1/2O2和LiCoO2形式存在,不含稳定性差的LNO组分,或LNO仅占10%以下,可以在空气中像LCO、LMO那样容易制备;中镍-NCM材料的特点是LNO组分有所增多,但仍处于50%以下,稍加控制还可在空气中制备;高镍-NCM材料的特点是LNO组分占绝大多数,必须在氧气条件下才可制备。NCA材料类似于高镍-NCM。

富锂锰基材料被认为是六方的LiMO2和单斜的Li2MnO3的固溶体(图6),它同样没有一张专属的JCPDS卡片。单斜相可引用JCPDS ?27-1252#卡片,其结构特点是有1/3的Li+占据了3b位,表述为Li[Li1/3Mn2/3]O2形式更为贴切。

【干货】锂离子电池正极材料标准解读

图6 富锂锰基材料的晶体结构[12]

2.4 正极材料的粒度分布

正极材料的粒度大小会直接影响电池浆料和极片的制备,一般大粒度材料浆料黏度低、流动性好,可以少用溶剂、固含量高。

2.5 正极材料的密度

锂离子电池体积能量密度很大程度上取决于活性物质密度。正极材料的密度与其所含元素的原子量、晶体排布方式、结晶程度、球形度、颗粒大小及分布、致密度等密切相关,受制备工艺影响。正极的密度分为松装密度、振实密度、粉末压实密度、极片压实密度、理论密度等。

2.6 正极材料的比表面积

正极比表面积大时,电池的倍率特性较好,但通常更易与电解液发生反应,使得循环和存储变差。正极材料比表面积与颗粒大小及分布、表面孔隙度、表面包覆物等密切相关。在钴酸锂体系里,小颗粒的倍率型产品对应的比表面积最大。磷酸铁锂因导电性差,颗粒以纳米团聚体形式设计、且表面包覆了无定形的碳,导致其比表面积在所有正极材料中最高。锰系材料与钴系相比,本身存在难以烧结的特点,其比表面积也整体较大。

2.7 正极材料的残存碱量

制备正极材料时,一般都会采用稍过量的Li/Me,以保证材料从里到外彻底锂化。因此大多数正极材料表面都会残留一定量多余锂,这部分锂大多以Li2CO3形式存在。

对于NC、NCM、NCA等镍系材料,Ni含量越高,材料混排加剧,残存碱量越多;严重时导致电池浆料黏度大、电池存储性能变差。

残存碱测试通常采用酸碱电位滴定或人工滴定,将正极粉体分散到一定量纯水中,过滤,量取一定体积的滤液用标准盐酸溶液滴定。选取酚酞和甲基橙作指示剂,依次在pH≈8和pH≈4附近出现2个等当点,分别记录所用标准盐酸体积(图7)。

【干货】锂离子电池正极材料标准解读图7 正极材料的残存碱量测试曲线[17]

2.8 正极材料的水分含量

正极材料的水分含量与其比表面积、颗粒大小及分布、表面孔隙度、表面包覆物等密切相关。水分含量对电池制浆影响很大。通常正极浆料大多采用聚偏氟乙烯(PVDF)作黏结剂,N-甲基吡咯烷酮(NMP)为溶剂,在此有机体系中大分子量的PVDF并非完全溶解,而是溶胶的形式存在。当正极材料的水分、残碱较高时,有机溶胶体系被破坏,PVDF将会从NMP中析出,使浆料发生黏度剧增,甚至出现果冻现象。

2.9 正极材料的杂质元素含量

除了特意引入的掺杂元素,正极材料的杂质元素越低越好。杂质元素一般是通过原料和生产过程引入的,需要在源头加以控制。最常见的杂质元素是Na、Ca、Fe、Cu,Na在前驱体和锂盐中含量都较高,Ca主要是锂盐引入的。磷酸铁锂本身Fe是主元素,又新引入了可溶解Fe2+的要求,但该指标过于宽松(≤0.2%),效果待考。考虑到NCM、NCA、OLO、动力型LMO都需要从前驱体做起,而前驱体大多用硫酸盐和氯化物等可溶盐原料,在沉淀过程中易夹生带入结晶。因此,这些标准加强了对、Cl-的控制要求。

2.10 正极材料的比容量、首次效率、电压平台要求

正极材料的比容量、首次充放电效率和电压平台等电化学性能指标,与其主元素含量、晶体结构、颗粒度大小、充放电电压、充放电电流大小等密切相关。基本规律是Li含量越高,比容量越大。

LCO具有α-NaFeO2层状结构,理论比容量 274 mA˙h/g,通常充电到4.2 ? V,仅有56%的Li脱出,充放电的可逆性好,所以首次充放电效率最高,达到95%以上。高电压LCO将充电电压提高到4.5 ? V,使更多的Li脱嵌参与电化学反应,比容量也提升到180 ? mA˙h/g以上。可见,抬高电压是提高电池能量密度的有效方案之一,前提是配套电解液在此高电压窗口下稳定。平台容量比率是由于历史原因形成的指标:早期国内大多电器要求电池电压高于3.6 ?V以上才能正常工作,低于这个电压就会关机或提示电压低。LCO的平台容量比率就是电池放电至3.6 V容量,与放电到2.75 ? V总容量的百分比。LCO因本身的放电电压平台较高,故平台容量比率在80%以上。

2.11 正极材料的倍率特性

用于电子烟、电动工具、航模、无人机、汽车 启动电源的锂离子电池,对电池和材料倍率性能需求很高,要求能够实现5 C、10 C,甚至30 C充 ?放电。

正极材料的倍率特性与其颗粒度大小、结晶度、Co含量高低、C包覆量多少等因素相关。高倍率型钴酸锂可以实现10 C放电,且10 C/1 ?C的倍率达到90%以上。

GB/T 30835—2014《锂离子电池用炭复合磷酸铁锂》倍率标准有些牵强,1 ?C倍率太低,几种型号的指标拉不开差距,能量型I的电导率和倍率竟然优于功率型Ⅲ,容易引起误导,建议下一次修订时简化分类。

2.12 正极材料的循环寿命

用于电动车的锂离子电池,期望能够实现2000次以上循环寿命。电动车一般都是短途使用,假如按2天充一次电计,2000次的循环寿命可以支撑纯电动车上路近11年。若按Tesla的Modal ?S携带60 kW˙h电、续航390 km计,每天50 km短途使用, ? 1周才充一次电,1000次的循环寿命就可满足其19年车龄。智能手机功能日渐强大,除了早期普通手机必备的电话、短信基本功能外,现有又具备了拍照、上网、微信、网购、办公、游戏等诸多功能,显示屏越来越大、机身越来越轻薄,对电池的能量密度要求也越来越高,同时循环寿命要达到500次以上,以支撑手机使用2年以上。

正极材料的循环寿命与其晶体结构、充放电深度、制备工艺等因素相关。磷酸铁锂材料具有稳定的橄榄石结构,理论上可以允许结构中的锂全部脱出,充放电可逆性好,因此表现出优异的循环性能。车用锂离子电池在实际路况条件下,受电池自身及环境的影响,温度会升高到50 ?℃以上,因此还需要关注高温循环和高温存储性能。锰酸锂在高温条件下,易发生Jahn-Teller效应,引发Mn溶解和晶体结构崩塌。因此YS/T ?677—2016《锰酸锂》标准中,动力型产品设置了55 ℃高温循环指标要求。

结语

综上所述,我国在锂离子电池正极材料领域的标准制、修订工作非常活跃,标准明确了专业术语,涵盖了大多数关键性能指标,取得了不错的行业引领效果,同时也存在一些问题。某些标准的分类不够细,有些测试项目设置又时过境迁、未能及时调整,还有些指标要求过于宽松、约束力差。

近年来,锂离子电池行业呈现稳步快速增长的态势,正极材料迎来了前所未有的机遇,各种新材料纷纷涌现,这就要求国家和行业标准不断推陈出新。建议各级政府部门应将标准研究列入科技计划,给予科研经费支持,引导领先企业投入人力、物力进行前瞻性研究和布局,条件成熟适时推出新标准。同时,今后新标准的制定或现有标准的升级,应成立专项小组,由领先企业牵头起草,与国外锂离子电池及其材料龙头公司的先进企业标准接轨,提高标准的科学性、适用性和可执行性,使更多的标准由推荐转为强制,从而提高我国电池及正极材料在国际市场的竞争力,促进锂离子电池产业链健康、可持续发展。

引用本文

刘亚飞,陈彦彬. 锂离子电池正极材料标准解读[J]. 储能科学与技术, 2018, 7(2): 314-326.

LIU Yafei, CHEN Yanbin. Interpretation of cathode material standards for ? lithium ion batteries. Energy Storage Science and Technology, 2018, 7(2): ?314-326.

?

相关新闻